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 LEVITATION LEARN: MAGNETIC LEVITATION & CONTROL VIA MACHINE LEARNING 

 A  BSTRACT  . 
 Magnetic  levitation  systems  have  garnered  significant 

 interest  due  to  their  potential  applications  in  various  fields  such 
 as  precision  positioning,  transportation,  and  robotics.  This 
 study  explores  the  implementation  of  a  three  degrees  of 
 freedom  (3DOF)  magnetic  levitation  system  using  policy 
 gradient  machine  learning  techniques.  The  control  algorithm 
 leverages  reinforcement  learning  principles  to  optimize  the 
 policy  governing  the  magnetic  fields'  modulation  for 
 maintaining stable levitation in three dimensions. 

 The  proposed  model  employs  a  policy  gradient  approach, 
 an  architecture  capable  of  handling  the  continuous  control 
 requirements  inherent  in  magnetic  levitation  systems.  By 
 employing  a  neural  network-based  policy,  the  system  learns 
 optimal  control  strategies  through  iterative  interactions  with  the 
 environment.  This  process  is  carried  out  through  numerous 
 training  episodes  in  a  custom  simulation  engine,  which  enables 
 the  policy  to  better  capture  the  complex  dynamics  of  the 
 levitation  system,  facilitating  the  generation  of  effective  control 
 policies. 

 The  results  demonstrate  the  efficacy  of  the  policy  gradient 
 machine  learning  approach  in  achieving  precise  and  stable 
 3DOF  magnetic  levitation.  The  trained  model  exhibits 
 adaptability  to  changes  in  the  system  parameters,  making  it 
 robust  enough  to  indicate  potential  application  in  real-world 
 scenarios.  Furthermore,  the  study  investigates  the  impact  of 
 various  hyperparameters  and  training  configurations  on  the 
 convergence  of  the  learning  process  as  well  as  and  the  overall 
 performance of the levitation control system. 

 This  research  contributes  to  the  growing  body  of 
 knowledge  on  the  application  of  machine  learning  in  control 
 systems  and  provides  insights  into  the  feasibility  of  policy 
 gradient  methods  for  addressing  the  challenges  posed  by  3DOF 
 control.  The  findings  have  implications  for  the  advancement  of 
 intelligent  control  strategies  in  levitation  technologies,  paving 
 the  way  for  enhanced  performance  and  expanded  applications 
 in fields requiring precise and dynamic positioning. 
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 1.  INTRODUCTION 
 Levitating  a  magnet  appears  conceptually  straightforward, 

 yet its implementation difficulty quickly scales with system 
 complexity.  In  simple  setups,  equilibrium  calculations  may 
 suffice  to  produce  control  methods  that  can  effectively  maintain 
 stability.  However,  as  systems  evolve  in  intricacy,  conventional 
 control  methodologies  hit  limitations.  Beyond  a  certain 
 threshold,  complex  and  uncertain  dynamics  challenge 
 traditional  modeling  approaches,  necessitating  the  adoption  of 
 more  sophisticated  techniques.  This  study  delves  into  the 
 domain  of  magnetic  levitation,  specifically  focusing  on  the 
 three degrees of freedom (3DOF) control aspect. 

 Acknowledging  the  limitations  of  traditional  control  in 
 handling  the  dynamics  of  a  3DOF  magnetic  levitation  system, 
 we  propose  the  adoption  of  neural  network-based  policy 
 gradient  methods.  With  the  ultimate  objective  being  the  use  of  a 
 machine  learning  model  as  the  system  controller,  opening  the 
 door  for  finding  stability  of  arbitrarily  complex  systems,  with 
 little  rework  necessary  for  handling  any  modifications  to  the 
 environment  it  is  controlling.  The  aim  of  this  exploration  is  to 
 understand  the  feasibility  of  employing  a  policy  gradient 
 machine  learning  approach  to  optimize  magnetic  field 
 modulation  for  stable  levitation  in  three  dimensions,  with  the 
 ability  to  also  learn  1D,  2D,  4D,  etc.  system  behaviors  with  low 
 burden placed on the user. 

 FIGURE  1:  DEPICTION  OF  THE  3D  MAGNETIC 
 LEVITATION  ENVIRONMENT  (green  circle:  target  position, 
 dark  blue  ball:  levitation  object,  joined  blue/red  spheres: 
 electromagnets) 

 This  introduction  outlines  the  complexity  of  levitation 
 systems,  highlights  the  limitations  of  traditional  control,  and 
 sets  the  stage  for  the  investigation  into  the  efficacy  of  policy 
 gradient  machine  learning  for  precise  and  adaptive  3DOF 
 magnetic levitation control. 

 2.  METHODS 
 In  order  to  encourage  swift  and  accurate  learning  of  an  RL 

 model,  a  reliable  environment  is  necessary.  Specifically,  this 
 environment  must  be  able  to  output  state  observation 
 properties,  run  quickly,  offer  visualizations  (for  troubleshooting 
 and  analysis),  and  be  quickly  modifiable.  Due  to  the  trouble  of 
 interlanguage  compatibility,  and  ease  of  development  we 
 decided  to  build  the  simulation  environment  as  a  Python 
 OpenAI  Gymnasium.  This  choice  fit  all  our  requirements  and 
 also allowed for clean separation from the ML codebase. 

 This  environment  provides  the  reference  from  which  the 
 control  model  is  built  off  of.  This  model  takes  in  the 
 observation  space  that  the  environment  provides,  a  3x3  of 
 current  ball  position  XYZ,  current  ball  velocity  XYZ,  and 
 desired  ball  position  XYZ.  The  policy  NN  agent  takes  this 
 information  into  its  input  layer,  and  outputs  a  continuous  action 
 space,  defined  by  a  set  of  μ  and  σ  pairs.  Each  pair  describes  a 
 normal  distribution  for  each  electromagnet,  which  is  then 
 sampled  from  to  produce  the  timestep’s  action.  This 
 non-deterministic,  stochastic  method  encourages  the  model  to 
 learn  faster  and  generalize  wider.  This  is  is  shown  in  the 
 diagrams in Figure 2, and Appendix Figure 1. 

 FIGURE  2:  FLOWCHART  FOR  HOW  ACTIONS  ARE 
 DERIVED FROM ENVIRONMENT OBSERVATIONS: 

 Two  policy  agent  architectures  were  used  in  the  research 
 process.  Initially,  for  a  proof  of  concept,  a  quick  REINFORCE 
 policy  gradient  was  utilized.  After  the  results  encouraged 
 further  researching,  a  Soft-Actor-Critic(SAC)  model  was 
 developed.  SAC  is  also  a  policy  gradient  like  REINFORCE,  but 
 it  adds  a  “critic”(value  function)  and  an  entropy  term  which 
 describes  the  randomness  of  an  action.  The  critic  is  trained  to 
 evaluate  the  expected  return  of  a  given  action.  SAC  then 
 combines  these  terms  to  form  an  objective  function  which  is 
 notably  less  brittle  than  REINFORCE.  In  our  case,  we  also 
 used target networks to add inertia to the training process 
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 . 

 Parameter  Value(s) 

 Learning Rate  5 * 10^-4 

 Gamma (Discount Factor)  0.99 

 Epsilon (stability coeff)  1 * 10^-6 

 Episodes  75,000 

 Timestep dt  0.05 

 TABLE  1:  SELECTION  OF  HYPERPARAMETER 
 VALUES 

 Hyperparameters  (in  Table  1)  were  set  to  values  used  in 
 other continuous action OpenAI gym. 

 The  reward  function  was  iterated  upon  until  it  successfully 
 encouraged the model to learn quickly and simply: 

 =  Distance  Reward:  By  subtracting  the  initial  𝐴 ( 𝑑 
 𝑖 

−  𝑑 
 0 
)

 distance  to  the  desired  point,  this  term  only  rewards  a  net 
 movement towards the desired point. A was set to 1. 

 =  Improvement  reward:  Equal  to  the  change  in  𝐵 
 𝑑 

 𝑖 
− 𝑑 

 𝑖 − 1 

 𝑑𝑡 
 distance  to  the  desired  point  over  one  timestep,  this  term 
 encourages  the  model  to  move  in  the  correct  direction.  B  was 
 set to 10. 

 :  Success  Reward:  When  the  ball  reaches  the  𝐶 ( 𝑑 
 𝑖 

<  0 .  1 )
 desired  position  (with  a  small  margin  of  error),  the  agent 
 receives  a  large  reward  as  this  is  the  key  desired  condition.  C 
 was set to 400. 

 :  Magnitude  Punishment:  To  prevent  the  agent  from  𝐷 (  ∂  𝐵 
 𝑑𝑡 ) 2 

 using  enormous  electromagnet  charges  to  try  to  quickly  move 
 the  magnet  around,  and  to  improve  early  learning  speed,  the 
 system is punished for using large magnitudes. D was set to 1. 

 This  reward  term  was  designed  to  incentivize  the  RL 
 system  to  prioritize  both  the  quick  and  accurate  positioning  of 
 the  levitated  object  within  the  desired  target  regions.  By 
 magnifying  the  rewards  for  being  positioned  in  the  target 
 region,  the  reward  strategically  aimed  to  encourage  the  RL 
 system  to  focus  on  the  key  goal,  fostering  more  effective  and 
 efficient  performance  in  the  dynamic  magnetic  levitation 
 environment. 

 FIGURE  3:  Comparison  between  the  simulation 
 environment  (pictured  right)  and  the  type  of  real-world  system 
 it aims to model and control (pictured left) 

 The  incorporation  of  a  distance-based  reward  function, 
 particularly  one  that  markedly  elevated  rewards  for  achieving 
 the  target  region,  represented  a  strategic  adaptation  amid 
 challenges  in  implementing  policy  gradient  methods.  This 
 approach  was  intended  to  imbue  the  RL  system  with  a 
 heightened  sensitivity  to  spatial  intricacies,  facilitating  a  more 
 refined and adaptive learning process. 

 In  essence,  the  study's  progress  unfolded  as  a  holistic 
 endeavor,  where  challenges  were  met  with  appropriate 
 solutions.  The  tailored  reward  function,  combined  with  the 
 exploration  of  alternative  RL  methodologies,  showcased  the 
 research's  commitment  to  improving  magnetic  levitation 
 capabilities through a deliberate and adaptive approach. 

 3.  RESULTS AND DISCUSSION 

 3.1 1D Convergence of REINFORCE Algorithm: 
 The  meticulous  application  of  the  policy-gradient 

 framework,  specifically  through  the  REINFORCE  algorithm, 
 produced  an  interesting  set  of  convergence  dynamics, 
 particularly  noteworthy  in  the  realm  of  one-dimensional  (1D) 
 systems.  The  algorithm  exhibited  adaptability,  finding  solutions 
 across  a  range  of  initial  system  configurations—a  testament  to 
 its  robustness  in  addressing  the  dynamic  challenges  posed  by 
 magnetic levitation control. 
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 FIGURE  4:  DEPICTION  OF  THE  1D  ENVIRONMENT 
 SIMULATION 

 The  convergence  dynamics,  depicted  in  Figure  1, 
 illuminate  the  algorithm's  process  of  navigating  between  the 
 policy  net  and  environment  configuration  in  order  to  learn  an 
 optimal  solution.  The  visualization  developed  by  researchers 
 (seen  below  in  Figure  5)  not  only  provides  a  more  explainable 
 understanding  of  the  learning  trajectory,  but  also  underscores 
 the  adaptability  of  the  REINFORCE  algorithm  in  the  face  of 
 varied  starting  configurations.  The  pace  of  convergence  also 
 becomes  an  important  aspect  of  the  research,  showing  that 
 solutions  can  be  discovered  after  a  sufficiently  large  number  of 
 training episodes. 

 FIGURE  5:  1D  LEARNING  PROCESS  EPISODIC 
 RETURN FOR REINFORCE POLICY GRADIENT MODEL 

 Once  we  had  established  a  working  policy  gradient  with 
 REINFORCE,  we  attempted  to  try  the  3D  simulation  case.  In 
 this  configuration,  magnets  were  positioned  in  a  ring  with  one 
 extra  at  the  origin,  as  shown  above  in  Figure  1.  This  ensured 

 that  there  were  sufficient  control  actions  for  moving  the  ball  in 
 a desired direction. 

 However,  even  with  75,000  episodes,  the  REINFORCE 
 algorithm  failed  to  converge  to  a  solution.  This  was  what 
 finally prompted us to move to SAC. 

 3.2 1D Convergence of SAC Algorithm: 
 After  setting  up  a  CleanRL  implementation  of  SAC,  we 

 attempted  first  the  1D  case  to  ensure  that  the  model  was  both 
 configured  correctly  and  minimally  viable.  The  tuned  results 
 are  shown  below  in  Figure  5,  and  unsuccessful  attempt  shown 
 in Appendix Figure 2. 

 FIGURE  6  :  1D  LEARNING  PROCESS  EPISODIC  RETURN  FOR 
 SOFT  ACTOR  CRITIC  POLICY  GRADIENT  ALGORITHM  (axes 
 share same labels as Fig. 3) 

 Results  were  encouraging.  Convergence,  which  in  this  case 
 is  exemplified  by  an  average  reward  of  4,000,  is  reached  at 
 120k  timesteps,  as  compared  to  REINFORCE’s  600k.  This 
 proved  that  the  new  architecture  was  quicker,  both  in 
 simulation and real time, to reach a result. 

 FIGURE  7:  3D  LEARNING  PROCESS  EPISODIC  RETURN 
 FOR SOFT ACTOR CRITIC POLICY GRADIENT ALGORITHM 

 3.3 3D Convergence of SAC Algorithm: 
 Using  the  same  system  configuration  as  shown  in  Figure  1, 

 we  attempted  the  same  experiment  we  tried  with  REINFORCE, 
 except  now  using  SAC.  Since  it  was  a  significantly  more 
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 challenging  control  problem  for  the  model  to  solve,  it  was 
 granted ~5x runtime to see if it began converging. 
 As  shown  in  the  graph  above  (with  x  axis  of  time  steps,  and  y 
 axis  of  rewards),  after  600,000  timesteps,  SAC  was  unable  to 
 show meaningful learning or convergence to a solution. 

 3.4 Implications for 3DOF Magnetic Levitation Control: 
 The  promising  results  obtained  in  the  controlled 

 environment  of  1D  systems  layed  a  robust  foundation  for  the 
 expansion  of  our  exploration  into  the  more  complex  domain  of 
 three  degrees  of  freedom  (3DOF)  magnetic  levitation  control. 
 The  adaptability  and  convergence  resilience  observed  in  the  1D 
 context  provide  confidence  in  extending  these  methodologies  to 
 higher-dimensional  scenarios,  where  precise  and  continuous 
 control becomes exponentially more challenging. 

 Beyond  the  immediate  application  in  magnetic  levitation 
 control,  the  implications  of  our  results  and  discussions 
 reverberate  across  broader  domains.  The  deliberate  focus  on 
 convergence  dynamics,  coupled  with  the  cross-referencing  of 
 methodologies,  opens  new  avenues  for  research  and 
 development  in  the  broader  field  of  dynamic  systems  control. 
 The  deliberate  pace  at  which  the  algorithm  converges  invites 
 further  investigation  into  its  potential  applications  across 
 various  industries  where  stability  in  complex  and  dynamic 
 systems is paramount. 

 In  conclusion,  our  exploration  of  the  convergence 
 dynamics  of  the  policy-gradient  approach,  cross-referenced 
 with  the  SAC  method,  not  only  advances  our  understanding  of 
 magnetic  levitation  control  but  also  propels  the  field  of  RL 
 towards  innovative  solutions  for  dynamic  systems  across 
 diverse  domains.  This  research  sets  the  stage  for  future 
 investigations,  inspiring  a  deeper  exploration  of  the  intricate 
 interplay  between  RL  methodologies  and  the  challenges  posed 
 by continuous and dynamic control scenarios. 

 4.  CONCLUSION 

 Summary & Learnings: 
 In the realm of Reinforcement Learning (RL), the 

 paradoxical nature of a model’s inherent instability presents 
 both challenges and opportunities, particularly when applied to 
 systems requiring adaptability to dynamic environments, as 
 exemplified by magnetic levitation. This instability is beneficial 
 when it comes to exploration and prevention of overfitting 
 (inherent stochasticity ensures the model gets a range of 
 solutions and doesn’t converge to the same one every time). On 
 the other hand, it is an obstacle to overcome when trying to 
 improve training times and convergence for complex systems. 

 This study delves into the intricate landscape of RL 
 methodologies, unraveling a tapestry of complexities and 
 nuances that demand careful consideration. As we searched 
 through the landscape of RL methodologies, we saw a range of 
 nuances within each method’s architecture, inputs, and outputs 
 that demanded careful consideration. The tradeoffs between 

 architecture selection and architecture tuning proved difficult to 
 balance, but this balancing act is worthwhile effort. The way to 
 overcome training obstacles may be tuning hyperparameters in 
 one case, a complete pivot to a different architecture in others, 
 or a combination of both. In all cases, exploring the range of 
 options is necessary to ensure the most appropriate model 
 architecture and hyperparameters are chosen for the task. 

 In our training process, the instability of the policy gradient 
 approach proved more burdensome than beneficial. Though our 
 model was exploring a range of solutions, it was doing so at a 
 detriment to not only the convergence time, but also the 
 consistency with which convergence was observed. Solutions 
 were found and forgotten at random across our training cycles, 
 and it was this inconsistency that led us to switch to SAC, 
 where the addition of the Critic network to our policy 
 gradient/lone Actor reduced the model’s variability, episodes to 
 find a solution, as well as the convergence run time. 

 The fragility associated with RL convergence introduces a 
 layer of intricacy, necessitating a profound understanding of its 
 dynamics. This fragility, however, reveals itself as a source of 
 valuable insights, guiding the calibration of RL models toward 
 robust and stable solutions. The role of reward mechanisms in 
 influencing the learning process and system behavior emerges 
 as a pivotal consideration, adding another layer of complexity 
 to the convergence process. 

 A noteworthy aspect of this exploration is the emphasis on 
 custom reward functions—a critical element in shaping the 
 behavior and learning trajectory of RL models. The strategic 
 design and calibration of custom reward functions become 
 instrumental in steering RL models toward convergence while 
 mitigating the challenges posed by instability. This nuanced 
 approach to reward mechanisms adds depth to the 
 understanding of RL dynamics, underscoring the significance 
 of careful design choices in optimizing control strategies. 

 In the pursuit of stability and adaptability, the fragility of 
 RL convergence is acknowledged, but its versatility becomes 
 the linchpin for developing effective control strategies. Despite 
 the intricacies, trade-offs, and fragility inherent in RL 
 methodologies, this study unveils a promising trajectory for 
 enhancing control strategies in dynamic systems, particularly in 
 the context of 3DOF magnetic levitation. 

 As we reflect on the implications of this research, it 
 becomes evident that the versatility and adaptability of RL, 
 coupled with a strategic exploration of custom reward 
 functions, hold significant promise. The nuanced insights 
 gained from this study contribute not only to the advancement 
 of RL methodologies but also pave the way for innovative 
 solutions in the challenging landscape of dynamic 
 environments. This research serves as a foundation for further 
 investigations, inspiring a deeper understanding of the interplay 
 between custom reward functions and the convergence 
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 dynamics of RL models, ultimately enriching the arsenal of 
 control strategy optimization in complex and dynamic systems. 

 Future Work: 
 As  mentioned  at  the  start  of  the  paper,  the  goal  of  this 

 research  exploration  was  understanding  whether  a  machine 
 learning  approach  could  be  adopted  to  a  problem  encountered 
 by  those  working  with  traditional  control  techniques.  As  results 
 in  digital  environments  have  shown  promise,  the  next  step  is  to 
 experiment  with  Sim2Real  transfer,  and  deploy  the  model  in  a 
 real-world  system.  Using  cameras  to  perform  object  tracking 
 with  OpenCV,  the  relevant  positions  and  velocities  that 
 represent  the  system  state  can  be  recorded,  then  passed  into  the 
 model  as  inputs  just  like  the  synthetic  state  information  that 
 was  used  to  train  the  model.  This  physical  exploration  will 
 serve  as  proof-of-concept  for  ML  Magnetic  Levitation,  and  add 
 a  further  dimension  to  the  way  robustness  is  evaluated  for  our 
 model 
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 APPENDIX: 
 Figure  1:  Diagram  of  environment  update 

 pipeline. 

 Figure  2:  An  example  of  an  early,  unsuccessful, 
 attempts to set up a 1D SAC model: 
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