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ABSTRACT.

Magnetic levitation systems have garnered significant
interest due to their potential applications in various fields such
as precision positioning, transportation, and robotics. This
study explores the implementation of a three degrees of
freedom (3DOF) magnetic levitation system using policy
gradient machine learning techniques. The control algorithm
leverages reinforcement learning principles to optimize the
policy governing the magnetic fields' modulation for
maintaining stable levitation in three dimensions.

The proposed model employs a policy gradient approach,
an architecture capable of handling the continuous control
requirements inherent in magnetic levitation systems. By
employing a neural network-based policy, the system learns
optimal control strategies through iterative interactions with the
environment. This process is carried out through numerous
training episodes in a custom simulation engine, which enables
the policy to better capture the complex dynamics of the
levitation system, facilitating the generation of effective control
policies.

The results demonstrate the efficacy of the policy gradient
machine learning approach in achieving precise and stable
3DOF magnetic levitation. The trained model exhibits
adaptability to changes in the system parameters, making it
robust enough to indicate potential application in real-world
scenarios. Furthermore, the study investigates the impact of
various hyperparameters and training configurations on the
convergence of the learning process as well as and the overall
performance of the levitation control system.

This research contributes to the growing body of
knowledge on the application of machine learning in control
systems and provides insights into the feasibility of policy
gradient methods for addressing the challenges posed by 3DOF
control. The findings have implications for the advancement of
intelligent control strategies in levitation technologies, paving
the way for enhanced performance and expanded applications
in fields requiring precise and dynamic positioning.
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1. INTRODUCTION

Levitating a magnet appears conceptually straightforward,
yet its implementation difficulty quickly scales with system
complexity. In simple setups, equilibrium calculations may
suffice to produce control methods that can effectively maintain
stability. However, as systems evolve in intricacy, conventional
control methodologies hit limitations. Beyond a certain
threshold, complex and wuncertain dynamics challenge
traditional modeling approaches, necessitating the adoption of
more sophisticated techniques. This study delves into the
domain of magnetic levitation, specifically focusing on the
three degrees of freedom (3DOF) control aspect.

Acknowledging the limitations of traditional control in
handling the dynamics of a 3DOF magnetic levitation system,
we propose the adoption of neural network-based policy
gradient methods. With the ultimate objective being the use of a
machine learning model as the system controller, opening the
door for finding stability of arbitrarily complex systems, with
little rework necessary for handling any modifications to the
environment it is controlling. The aim of this exploration is to
understand the feasibility of employing a policy gradient
machine learning approach to optimize magnetic field
modulation for stable levitation in three dimensions, with the
ability to also learn 1D, 2D, 4D, etc. system behaviors with low
burden placed on the user.

FIGURE 1: DEPICTION OF THE 3D MAGNETIC
LEVITATION ENVIRONMENT (green circle: target position,
dark blue ball: levitation object, joined blue/red spheres:
electromagnets)

This introduction outlines the complexity of levitation
systems, highlights the limitations of traditional control, and
sets the stage for the investigation into the efficacy of policy
gradient machine learning for precise and adaptive 3DOF
magnetic levitation control.

2. METHODS

In order to encourage swift and accurate learning of an RL
model, a reliable environment is necessary. Specifically, this
environment must be able to output state observation
properties, run quickly, offer visualizations (for troubleshooting
and analysis), and be quickly modifiable. Due to the trouble of
interlanguage compatibility, and ease of development we
decided to build the simulation environment as a Python
OpenAl Gymnasium. This choice fit all our requirements and
also allowed for clean separation from the ML codebase.

This environment provides the reference from which the
control model is built off of. This model takes in the
observation space that the environment provides, a 3x3 of
current ball position XYZ, current ball velocity XYZ, and
desired ball position XYZ. The policy NN agent takes this
information into its input layer, and outputs a continuous action
space, defined by a set of p and ¢ pairs. Each pair describes a
normal distribution for each electromagnet, which is then
sampled from to produce the timestep’s action. This
non-deterministic, stochastic method encourages the model to
learn faster and generalize wider. This is is shown in the
diagrams in Figure 2, and Appendix Figure 1.
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FIGURE 2: FLOWCHART FOR HOW ACTIONS ARE
DERIVED FROM ENVIRONMENT OBSERVATIONS:

Two policy agent architectures were used in the research
process. Initially, for a proof of concept, a quick REINFORCE
policy gradient was utilized. After the results encouraged
further researching, a Soft-Actor-Critic(SAC) model was
developed. SAC is also a policy gradient like REINFORCE, but
it adds a “critic”’(value function) and an entropy term which
describes the randomness of an action. The critic is trained to
evaluate the expected return of a given action. SAC then
combines these terms to form an objective function which is
notably less brittle than REINFORCE. In our case, we also
used target networks to add inertia to the training process
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Parameter Value(s)

Learning Rate 5*10M-4

Gamma (Discount Factor) 0.99

Epsilon (stability coeft) 1 *10"-6

Episodes 75,000

Timestep dt 0.05

TABLE 1: SELECTION OF HYPERPARAMETER

VALUES

Hyperparameters (in Table 1) were set to values used in
other continuous action OpenAl gym.

The reward function was iterated upon until it successfully
encouraged the model to learn quickly and simply:

m +C(d; <0.1)— D =* {ﬁ‘z

—Ald; — )
Al dt ot

dy) + B

A(di —-d 0) = Distance Reward: By subtracting the initial

distance to the desired point, this term only rewards a net
movement towards the desired point. A was set to 1.

d—d
B—%
distance to the desired point over one timestep, this term
encourages the model to move in the correct direction. B was
set to 10.

C(di < 0.1): Success Reward: When the ball reaches the

desired position (with a small margin of error), the agent
receives a large reward as this is the key desired condition. C
was set to 400.

1

= Improvement reward: Equal to the change in

D(%)Z: Magnitude Punishment: To prevent the agent from

using enormous electromagnet charges to try to quickly move
the magnet around, and to improve early learning speed, the
system is punished for using large magnitudes. D was set to 1.

This reward term was designed to incentivize the RL
system to prioritize both the quick and accurate positioning of
the levitated object within the desired target regions. By
magnifying the rewards for being positioned in the target
region, the reward strategically aimed to encourage the RL
system to focus on the key goal, fostering more effective and
efficient performance in the dynamic magnetic levitation
environment.

FIGURE 3: Comparison between the simulation
environment (pictured right) and the type of real-world system
it aims to model and control (pictured left)
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The incorporation of a distance-based reward function,
particularly one that markedly elevated rewards for achieving
the target region, represented a strategic adaptation amid
challenges in implementing policy gradient methods. This
approach was intended to imbue the RL system with a
heightened sensitivity to spatial intricacies, facilitating a more
refined and adaptive learning process.

In essence, the study's progress unfolded as a holistic
endeavor, where challenges were met with appropriate
solutions. The tailored reward function, combined with the
exploration of alternative RL methodologies, showcased the
research's commitment to improving magnetic levitation
capabilities through a deliberate and adaptive approach.

3. RESULTS AND DISCUSSION

3.1 1D Convergence of REINFORCE Algorithm:

The meticulous application of the policy-gradient
framework, specifically through the REINFORCE algorithm,
produced an interesting set of convergence dynamics,
particularly noteworthy in the realm of one-dimensional (1D)
systems. The algorithm exhibited adaptability, finding solutions
across a range of initial system configurations—a testament to
its robustness in addressing the dynamic challenges posed by
magnetic levitation control.

3 © 2023 by MIT



Electromagnet ©
Strength —
Vibrance of Pole ~
Colors

FIGURE 4: DEPICTION OF THE 1D ENVIRONMENT
SIMULATION

The convergence dynamics, depicted in Figure 1,
illuminate the algorithm's process of navigating between the
policy net and environment configuration in order to learn an
optimal solution. The visualization developed by researchers
(seen below in Figure 5) not only provides a more explainable
understanding of the learning trajectory, but also underscores
the adaptability of the REINFORCE algorithm in the face of
varied starting configurations. The pace of convergence also
becomes an important aspect of the research, showing that
solutions can be discovered after a sufficiently large number of
training episodes.
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FIGURE 5: 1D LEARNING PROCESS EPISODIC
RETURN FOR REINFORCE POLICY GRADIENT MODEL

Once we had established a working policy gradient with
REINFORCE, we attempted to try the 3D simulation case. In
this configuration, magnets were positioned in a ring with one
extra at the origin, as shown above in Figure 1. This ensured

that there were sufficient control actions for moving the ball in
a desired direction.

However, even with 75,000 episodes, the REINFORCE
algorithm failed to converge to a solution. This was what
finally prompted us to move to SAC.

3.2 1D Convergence of SAC Algorithm:

After setting up a CleanRL implementation of SAC, we
attempted first the 1D case to ensure that the model was both
configured correctly and minimally viable. The tuned results
are shown below in Figure 5, and unsuccessful attempt shown
in Appendix Figure 2.
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FIGURE 6: 1D LEARNING PROCESS EPISODIC RETURN FOR
SOFT ACTOR CRITIC POLICY GRADIENT ALGORITHM (axes
share same labels as Fig. 3)

Results were encouraging. Convergence, which in this case
is exemplified by an average reward of 4,000, is reached at
120k timesteps, as compared to REINFORCE’s 600k. This
proved that the new architecture was quicker, both in
simulation and real time, to reach a result.

episodic_retur
tag: charts/episodic_return

FIGURE 7: 3D LEARNING PROCESS EPISODIC RETURN
FOR SOFT ACTOR CRITIC POLICY GRADIENT ALGORITHM

3.3 3D Convergence of SAC Algorithm:

Using the same system configuration as shown in Figure 1,
we attempted the same experiment we tried with REINFORCE,
except now using SAC. Since it was a significantly more
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challenging control problem for the model to solve, it was
granted ~5x runtime to see if it began converging.

As shown in the graph above (with x axis of time steps, and y
axis of rewards), after 600,000 timesteps, SAC was unable to
show meaningful learning or convergence to a solution.

3.4 Implications for 3DOF Magnetic Levitation Control:

The promising results obtained in the controlled
environment of 1D systems layed a robust foundation for the
expansion of our exploration into the more complex domain of
three degrees of freedom (3DOF) magnetic levitation control.
The adaptability and convergence resilience observed in the 1D
context provide confidence in extending these methodologies to
higher-dimensional scenarios, where precise and continuous
control becomes exponentially more challenging.

Beyond the immediate application in magnetic levitation
control, the implications of our results and discussions
reverberate across broader domains. The deliberate focus on
convergence dynamics, coupled with the cross-referencing of
methodologies, opens new avenues for research and
development in the broader field of dynamic systems control.
The deliberate pace at which the algorithm converges invites
further investigation into its potential applications across
various industries where stability in complex and dynamic
systems is paramount.

In conclusion, our exploration of the convergence
dynamics of the policy-gradient approach, cross-referenced
with the SAC method, not only advances our understanding of
magnetic levitation control but also propels the field of RL
towards innovative solutions for dynamic systems across
diverse domains. This research sets the stage for future
investigations, inspiring a deeper exploration of the intricate
interplay between RL methodologies and the challenges posed
by continuous and dynamic control scenarios.

4. CONCLUSION

Summary & Learnings:

In the realm of Reinforcement Learning (RL), the
paradoxical nature of a model’s inherent instability presents
both challenges and opportunities, particularly when applied to
systems requiring adaptability to dynamic environments, as
exemplified by magnetic levitation. This instability is beneficial
when it comes to exploration and prevention of overfitting
(inherent stochasticity ensures the model gets a range of
solutions and doesn’t converge to the same one every time). On
the other hand, it is an obstacle to overcome when trying to
improve training times and convergence for complex systems.

This study delves into the intricate landscape of RL
methodologies, unraveling a tapestry of complexities and
nuances that demand careful consideration. As we searched
through the landscape of RL methodologies, we saw a range of
nuances within each method’s architecture, inputs, and outputs
that demanded careful consideration. The tradeoffs between

architecture selection and architecture tuning proved difficult to
balance, but this balancing act is worthwhile effort. The way to
overcome training obstacles may be tuning hyperparameters in
one case, a complete pivot to a different architecture in others,
or a combination of both. In all cases, exploring the range of
options is necessary to ensure the most appropriate model
architecture and hyperparameters are chosen for the task.

In our training process, the instability of the policy gradient
approach proved more burdensome than beneficial. Though our
model was exploring a range of solutions, it was doing so at a
detriment to not only the convergence time, but also the
consistency with which convergence was observed. Solutions
were found and forgotten at random across our training cycles,
and it was this inconsistency that led us to switch to SAC,
where the addition of the Critic network to our policy
gradient/lone Actor reduced the model’s variability, episodes to
find a solution, as well as the convergence run time.

The fragility associated with RL convergence introduces a
layer of intricacy, necessitating a profound understanding of its
dynamics. This fragility, however, reveals itself as a source of
valuable insights, guiding the calibration of RL models toward
robust and stable solutions. The role of reward mechanisms in
influencing the learning process and system behavior emerges
as a pivotal consideration, adding another layer of complexity
to the convergence process.

A noteworthy aspect of this exploration is the emphasis on
custom reward functions—a critical element in shaping the
behavior and learning trajectory of RL models. The strategic
design and calibration of custom reward functions become
instrumental in steering RL models toward convergence while
mitigating the challenges posed by instability. This nuanced
approach to reward mechanisms adds depth to the
understanding of RL dynamics, underscoring the significance
of careful design choices in optimizing control strategies.

In the pursuit of stability and adaptability, the fragility of
RL convergence is acknowledged, but its versatility becomes
the linchpin for developing effective control strategies. Despite
the intricacies, trade-offs, and fragility inherent in RL
methodologies, this study unveils a promising trajectory for
enhancing control strategies in dynamic systems, particularly in
the context of 3DOF magnetic levitation.

As we reflect on the implications of this research, it
becomes evident that the versatility and adaptability of RL,
coupled with a strategic exploration of custom reward
functions, hold significant promise. The nuanced insights
gained from this study contribute not only to the advancement
of RL methodologies but also pave the way for innovative
solutions in the challenging landscape of dynamic
environments. This research serves as a foundation for further
investigations, inspiring a deeper understanding of the interplay
between custom reward functions and the convergence
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dynamics of RL models, ultimately enriching the arsenal of
control strategy optimization in complex and dynamic systems.

Future Work:

As mentioned at the start of the paper, the goal of this
research exploration was understanding whether a machine
learning approach could be adopted to a problem encountered
by those working with traditional control techniques. As results
in digital environments have shown promise, the next step is to
experiment with Sim2Real transfer, and deploy the model in a
real-world system. Using cameras to perform object tracking
with OpenCV, the relevant positions and velocities that
represent the system state can be recorded, then passed into the
model as inputs just like the synthetic state information that
was used to train the model. This physical exploration will
serve as proof-of-concept for ML Magnetic Levitation, and add
a further dimension to the way robustness is evaluated for our
model
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APPENDIX:
Figure 1:
pipeline.
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attempts to set up a 1D SAC model:
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