
DOM-BOT: A Precision Domino Placing Robot
Elijah Bell

MechE
Massachusetts Institute of Technology

Cambridge, MA, USA
elibell@mit.edu

Jonathan Zhang
EECS

Massachusetts Institute of Technology
Cambridge, MA, USA

jonzhang@mit.edu

Abstract—Domino placing is a complex, precise and tedious
task that even humans find challenging. In this paper, we explore
the potential for autonomous domino placing with a KUKA
iiwa 7 DoF robotic arm. Our approach integrates point cloud
reconstruction, segmentation, and pose estimation to determine
optimal grasps, while precision movements are executed through
motion planning with Kinematic Trajectory Optimization. The
system successfully generates domino grasp poses and demon-
strates setup and knockdown of dominoes in a line. Future work
could focus on improving runtime efficiency and expanding the
range of domino configurations.

Index Terms—Robotic Manipulation, Stacking, Pick and Place,
Inverse Kinematics, Kinematic Trajectory Optimization

I. INTRODUCTION

The pastime of placing and knocking over dominoes has
existed for hundreds of years, with dominoes being invented in
China at least as early as the 12th century [1]. For each of the
hundreds of years of domino stacking, people have manually
placed each domino carefully, by hand, into an inherently un-
stable position, before knocking them down. A short duration
domino toppling can require dozens of dominoes to be placed
for even a couple seconds of payoff, and any mistakes will
bring the attempt right back to where it started. There exists
a good opportunity to update this process using some of our
technological advancements since the 12th century.

If a robotic approach to stack dominoes was developed,
with arbitrary paths able to be programmed in, people would
be saved the hours of tedium of placing dominoes by hand.
Instead, they could enjoy designing the structures and simply
sit back and watch the robot build the domino run for them,
getting all of the reward with far less work. In addition, if
the system doesn’t need a sorted set of dominoes to place
from, users could simply dump out a sufficiently large pile
onto a table, saving time and effort that otherwise would be
spent sorting. Further, any knocked down structure could just
be reassembled or reused in a new location, allowing for the
domino stacking and toppling to continue perpetually.

Others have created autonomous domino machines in the
past, all consisting of some sort of wheeled base, dispense-
ment mechanism, and magazine of prearranged dominoes.
These machines are widespread enough that cheap models are
available on Amazon or constructable through a DIY tutorial
on Instructables [2]. Each of these machines is good enough
for placing down one-, maybe two-, dimensional arrays of
dominoes in smooth continuous paths. However, if one wanted

to avoid the tedium of placing dominoes into 3D structures
as done by some advanced builders [3] [4], these machines
wouldn’t give you any help. A more sophisticated approach
would be necessary for truly arbitrary domino construction.

We present a robotic manipulator which could achieve such
arbitrary construction, albeit with a kuka iiwa robot arm likely
too expensive for almost all but perhaps the most elite domino
constructors. While the project is thus limited in real life
implementation, we do hope it is both a cool art project and
an interesting demonstration of work which can act as another
block in a developing set of projects for others to build off of
in the future.

II. RELATED WORK

Not much work has been done in the specific domino
stacking problem, but there have been some pick and place
problems that are similar to our work that we can learn from,
particularly in that of precision and stacking.

A. SimPLE, a visuotactile method learned in simulation to
precisely pick, localize, regrasp, and place objects [5]

Maria et. al explored pick-and-place solutions with in-
creased accuracy. In precise pick-and-place, also known as
kitting, their robot transforms an unstructured arrangement of
objects into an organized arrangement. The approach, dubbed
SimPLE (Simulation to Pick Localize and placE), learns to
pick, regrasp, and place objects using the object’s computer-
aided design (CAD) model, without any prior experience or
encounters with the specific objects. Such high accuracy prior
informed grasp selection would be relevant to our project.

B. Autonomous robotic stone stacking with online next best
object target pose planning [6]

Fadri Furrer et al. explore autonomous stone stacking with
robotic manipulation. They were able to stack towers of
rocks in eleven consecutive trials. This relates to our project
of stacking dominoes because of the pick and placing of
objects in different orientations into specifically precalculated
structures.

III. APPROACH

Our approach can be divided into two main stages: grasp
generation and trajectory planning. Grasps are generated from
depth information combined with segmented color images



to calculate domino bounding boxes and return grasp pose
information. We then perform precise trajectory planning with
Kinematic Trajectory Optimization to transform from the
desired grasp to the exact placement of the dominoes in a
line without knocking any over in the process.

A. Environment

Our system consists of a Kuka iiwa robotic arm, a WSG
two finger robotic gripper, two Intel Realsense D415 depth and
RGB cameras, a table, and dominoes which were produced in
CAD and ported in as obj files. The robotic arm is welded
to the table and all dominoes are defined as floating base
bodies. All setup and simulation was done in Drake, with
visualizations done through Meshcat.

Fig. 1: An image from meshcat of the Kuka iiwa robot arm,
some dominoes, three domino goal poses as spheres, two
floating Realsense cameras, and a white plane for the table.

Our plants are all created with drake’s built in MakeHard-
wareStation, and throughout the simulation, we maintain two
plants: the main physics plant that we visualize in Meshcat,
and a shadow copy plant without the dominoes and with a
fixed gripper that we use for motion planning (further detail
on the two plant structure in the trajectory planning section).

B. Grasp Generation

The domino chosen to be grasped and moved to the desired
position must first be selected from the unsorted pile. This pile
is created by allowing N dominoes to fall and allowing physics
to determine how they land. As a result, the pile has dominoes
resting on top of one another at various angles and orientations.
From this state, our process of outputting the desired grasp for
a domino is as follows:

1) Take a picture with the Realsense Camera: The
Realsense combination depth and color camera is po-
sitioned above and to the side of where the dominoes
fall into a pile. This orientation gives it the benefit of
capturing both the top and sides of the dominoes, which
allow for a more complete point cloud reconstruction.

2) Generate masks with the Segment Anything Model
(SAM): Using the color image captured from the cam-
era, Meta’s Segment Anything Model is used to output

a series of masks. Masks are generated for every object
by prompting the model with samples taken from a grid
all over the image.

3) Generate point clouds and bounding box: Now using
the generated masks and depth image, we reconstruct
the corresponding point cloud for each mask using the
camera intrinsics and a pinhole model of the camera [7]:

X =
z(x− cx)

fx
(1)

Y =
z(y − cy)

fy
(2)

Z = z (3)

4) Downselect bounding boxes: Before these bounding
boxes can be used, they must first be filtered for
faults since the segmentation process returns overlap-
ping masks. As a result, some of the bounding boxes
contain multiple dominoes or other undesirable parts
of the scene. We know the volume and dimensions of
a domino, so any points too far from the center are
removed, and the bounding box is reevaluated to see if it
matches the correct volume plus/minus some tolerance.
Outliers are also removed based on if they have enough
neighbors within a certain radius sphere.

5) Return singular bounding box and grasp: Using the
list of orientations of dominoes output from the previous
step, the best candidate is then chosen. Although multi-
ple factors influence this idea of ”best grasp candidate”,
we implemented a simple algorithm that just returns the
domino which has it’s largest face oriented most parallel
to the floor. The condition for such a domino to exist is
naturally enforced by simulating enough extra dominoes
in the pile generation stage.

C. Trajectory Planning

To path plan accurate and precise enough trajectories for
domino placing, we developed an approach with inverse kine-
matics, specifically kinematic trajectory optimization. In order
to do so, we worked with Drake’s KinematicTrajectoryOpti-
mization class, finding and defining a B-spline path through
an optimization of costs and constraints.

The constraints we set are as follow:
• Position Constraints: Initial and final position con-

straints at domino grasp and domino placement
• Orientation Constraints: Initial and final orientation

constraints at domino grasp and domino placement
• Velocity Constraints: Velocity constraints to ensure the

robot starts and ends with zero velocity
• Collision Constraints: Collision constraints evaluated

at multiple points along the trajectory with fine-grained
sampling to ensure a minimum safe distance between the
robot and any obstacles

However, beyond the typical kinematic trajectory optimiza-
tion setup, the main challenge for our task was the extremely



(a) Domino Misplaced (b) Domino Knocked Over

Fig. 2: Examples showing some of the difficulties encountered
along the way due to the very small size of the dominoes and
precise orientations we needed. On the right we see the domino
failing to be placed upright with any margin of error in the
constraints. On the left we see one domino knocking over an
already placed one on its trajectory.

strict position and orientation constraints we needed to set.
Due to the small size of the dominoes and spacing between
them, we had to be able to find paths while defining no
tolerance buffer between the lower and upper bounds of
position and orientation constraints.

To address these challenges, we implemented two addi-
tional strategies to supplement our trajectory optimization. The
first strategy involved minimizing the number of variables in
optimization problem to reduce its complexity. We achieved
this by defining a shadow plant in the background which
mirrored the robot’s initial setup, but excluded the dominoes
and used a welded-finger version of the wsg gripper. By doing
so, we focus only on the seven joint positions of the robot
arm, simplifying the optimization process. After computing a
trajectory for the shadow plant, we synchronized it with the
main simulation, ensuring that the start and end poses in the
trajectories would always align.

The second strategy was the introduction of an intermediate
pose along the trajectory from the pile of dominoes to their
placement. The strict constraints we set often caused the
kinematic trajectory optimization to struggle finding viable
paths. By breaking down the trajectory into two stages, we
significantly improved the success rate of the optimization.
To ensure seamless execution, we wrote a function to scale
the two trajectory segments to align in time, enabling smooth
transitions and reliable robot commands.

IV. EVALUATION AND DISCUSSION

A. Grasp Generation

The intended goal of this project was to pick up a series
of dominoes from an unsorted pile and place them into a user
defined domino run. Beyond a basic line of dominoes, increas-
ing complexity could be added by increasing the number of
the dominoes or making the domino run more intricate. Key
performance metrics we were aiming for included if the model
can identify and provide a good domino grasp candidate, if it

can pick up a domino, if it can place a domino, and if it can
pick up and place multiple dominoes.

To validate the grasp generation stage for these metrics, each
of the steps outlined in the approach section have their results
shown here.

Fig. 3: Grasp Generation Step 1. A depth map and color
image of the dominoes once they have settled into a pile. The
color image is black and white simply because the world lacks
color within the texture files.

Fig. 4: Grasp Generation Step 2. An image showing the
segmented masks of the image from the camera. Each color
represents a different mask, and some masks are overlayed on
top of each other. In this image there are 30 dominoes but 41
masks, so masks clearly must be filtered.

The implemented point clouds reconstruction works well,
accurately overlaying the point clouds over the dominoes.
However, because some of the masks generated by SAM cover
more or less than just one domino, the resulting point clouds
needed to be cleaned up. After the bounding boxes were
generated off of the point cloud and the original masks (Fig.
5), filtering and adjustment was done.

First, the bounding boxes were filtered by volume. Since
the size of the dominoes is known, bounding boxes which
have a volume that is either too big or too small could be
removed. While this did remove incomplete point clouds of
partially obscured dominoes, this was acceptable since the
domino which is doing the obscuring would still be in the list
and is a better grasp candidate anyway. Volume filtering also
worked to eliminate overlapping overly specific point clouds,
such as can be seen in the purple and indigo domino and the



Fig. 5: Grasp Generation Step 3. A screenshot of meshcat
showing the reconstructed point clouds using the masks from
above.

yellow-green and red domino. The point clouds also include
outliers, such as seen to the right of the green domino in Figure
6. Such outliers need to be removed to make the bounding box
as tight as possible for good grasp generation. This is done
by removing all points which miss a threshold of neighboring
points within a certain radius, giving us nice bounding boxes
shown in Figure 7. The yellow-green domino shown is now
missing, but since it was not a prime grasp candidate, this is
okay.

Fig. 6: A close up view of the segmented point clouds. Of note
are the outlier points on the right side of the green domino.

Now that we have the bounding boxes, we want to assign
an orientation to it, and one that is standardized to each of
the sides of the domino. If we want to be able to grasp the
domino in a particular way each time, we need to have the
axes of the rigid transform be consistent. The choice of which
of xyz goes to big, long, and small face is arbitrary as long
as the same pattern is remembered for when we go to align
the gripper to the object. They are also rotated to ensure the
y(green) axis is facing upwards. Once these transforms have
been generated, we are ready to select a domino for grasping.
This selection process is based on a scoring process which
ranks dominoes based on which dominoes have the flattest
orientation. Improvements could be made to this approach by
simply checking to see if there are other dominoes within a
certain radius which could interfere with the grasp attempt.

Fig. 7: Grasp Generation Step 4. Generated bounding boxes
after filtering out outliers and point clouds which were too
small.

The grasp returned is the one with the large triad as shown in
Figure 8.

Fig. 8: Grasp Generation Step 5. Final bounding boxes and
grasp orientations for each of the dominoes. The selected grasp
to be attempted by the robot is the large triad.

B. Trajectory Planning

In the end, combining our grasp generation with our trajec-
tory planning, our robot was able to successfully place a line
of dominoes in the correct intervals such that they could be
knocked down.

Limited in compute, we opted for a straightforward test
of the robot’s final capabilities: picking and placing three
dominoes in a line before knocking them down. Each of
the final destinations for the dominoes was entered in as a
parameter, so more complex configurations should be possible
with no modification to the underlying code.

The dominoes in this test all were flat on the ground before
being picked up and placed in a line. The gripper was position
controlled to close fully and squeeze the domino when it
encountered resistance. In this demonstration, we opted for
a simple orthogonal grip, but if we were doing more complex
grips, this grip would be rotated about the medium axis of
the domino so that when placing the arm approaches from an
angle above so that it does not impact the floor. (Fig 9).



Fig. 9: Domino Placing: Robot successfully grabs domino
and places it down.

Placing the dominoes was done once the arm reached the
final position, again constrained in both position, orientation,
and velocity. A simple position command was sent to open
the gripper, and, as long as the domino was sufficiently close
to the ground, the domino would land and stay in place (Fig
10).

Fig. 10: Domino Placed: Robot successfully placed dominoes
in a line.

Once all the dominoes were set up in the run, we moved
the iiwa arm back and then triggered the front domino by
executing a trajectory designed to strike it, causing the rest to
topple over. (Fig 11).

Fig. 11: Dominoes Knocked Over: Robot knocks over domi-
noes, showing the correct spacing between them.

(a) Incorrectly Rotated Bounding Box (b) Correct Bounding Box

Fig. 12: The same domino point cloud and bounding box
shown in a) as correctly oriented with no outlier removal,
and in b) as incorrectly oriented with outlier removal. Note
the point in the lower center corner of the domino which is
removed. There are also points on the other side of the domino
which were removed as well.

C. Discussion and Improvements

The generation of grasps overall worked well: grasps were
generated for at least 70% of the dominoes, and each generated
grasp was almost always centered and oriented on the domino
as desired. Earlier tests using statistical approaches to remov-
ing outlier points from the point clouds ended up removing
too many points so the height of the bounding box would be
inaccurate. Filtering by volume required manual tuning of the
volume cut off limits so as not to remove good point clouds
that were only too big due to outlier points.

Surprisingly, it was sometimes the few outlier points which
provided a useful constraint preventing bounding boxes from
being incorrectly rotated as in Fig 12. Here, the outlier point
is a correct point on the side of the domino, while in the green
domino shown in Fig 6, they are a set of points projected from
an entirely separate domino.

Even though there were two cameras set up in the simula-
tion, only one was being used. Instead, if the segmented point



clouds were generated from both cameras, and then merged
based off of a metric like distance between centers, the point
clouds would be more complete, making the bounding boxes
and thus grasp generation more robust. The initial versions of
the simulation were slow to simulate, but 20x improvements
were made once a simplified box model was used instead of
the mesh for collision calculations.

An improved grasp selection algorithm would likely also
take into account efforts to maximize the selected grasp’s
distance to other dominoes and how high in z it is (if it’s
on top vs bottom of a pile).

In terms of motion planning, although the robot was able
to successfully pick and place dominoes in a line, the process
of getting to this point was not easy, and the end solution
was not as robust as we hoped. Even with the strategy listed
in our approach, Kinematic Trajectory Optimization, although
performing great with the position constraints, proved to not be
very consistent in finding paths for the strict orientation con-
straints we gave it. It failed to find the correct configurations
for many different poses, and was especially bottle necked by
how close the target goal pose was to the floor.

In future work, we would hope that we could make the path
planning algorithm more robust. We would still use kinematic
trajectory optimization for the more broad movements in the
process, ex: bringing the gripper above the pile of dominoes
and bringing the gripper above where it needs to place them,
but perhaps a more precise and consistent algorithm for the
last step of bringing it from that above point to actually
picking up/placing the domino. We hope that this combination
of a more coarse path planning algorithm with a fine tuned
one, would allow it to still have a relatively good run time
while also being able to consistently handle the more precise
orientation constraints.

V. CONCLUSION

In this paper, we have demonstrated an approach to au-
tonomous domino placing using a KUKA iiwa 7 DoF robotic
arm. Our system effectively combines point cloud reconstruc-
tion, segmentation, and precise motion planning to execute
grasp generation and domino placement. The results show that
the system can successfully pick dominoes from an unsorted
pile and arrange them into a predefined line.

Our work advances the automation of a traditionally manual
and error-prone task, showcasing the potential for robotic
manipulators in fine-grained pick-and-place applications. By
leveraging modern segmentation models and trajectory opti-
mization techniques, our approach showcases a novel applica-
tion but also provides a framework that can be extended for
more complex domino configurations or other related work.

Future research can focus on improving the runtime effi-
ciency of the motion planning processes, which would make
real-world implementations more feasible. Additionally, while
we believe the robot should be capable of constructing 3D
domino structures, this capability was not tested within this
project. Further research could explore the feasibility of 3D
structures and enhance the system’s robustness to variations

in the environment, expanding the capabilities of autonomous
domino manipulation systems.

VI. CONTRIBUTION STATEMENTS

Elijah Bell Worked on simulation setup and domino grasp
generation

Jonathan Zhang Worked on kinematic trajectory optimiza-
tion and the placement of the dominos in simulation

REFERENCES

[1] Lo, Andrew. ”The Game of Leaves: An Inquiry into the Origin of
Chinese Playing Cards,” Bulletin of the School of Oriental and African
Studies, University of London, Vol. 63, No. 3 (2000): 389-406.

[2] Gzumwalt and Instructables, “Pink and green domino machine II,”
Instructables, https://www.instructables.com/Pink-and-Green-Domino-
Machine-II/ (accessed Dec. 9, 2024).

[3] T. Weissker, “Building Techniques — Domino-Tim,” Domino-tim.de,
2024. https://domino-tim.de/en/tech/ (accessed Dec. 16, 2024).

[4] “Tutorials,” Hevesh5. https://www.hevesh5.com/tutorials
[5] M. Bauza, A. Bronars, Y. Hou, I. Taylor, N. Chavan-Dafle, and A.

Rodriguez, “simPLE: a visuotactile method learned in simulation to
precisely pick, localize, regrasp, and place objects,” arXiv.org, 2023.
https://arxiv.org/abs/2307.13133 (accessed Dec. 16, 2024).

[6] “Autonomous robotic stone stacking with online next best object target
pose planning — IEEE Conference Publication — IEEE Xplore,”
ieeexplore.ieee.org. https://ieeexplore.ieee.org/document/7989272

[7] “Robotic Manipulation,” Mit.edu, 2024, Russ Tedrake.
https://manipulation.csail.mit.edu/ (accessed Dec. 16, 2024).


